Substructure Preconditioners for Elliptic Saddle Point Problems

نویسندگان

  • TORGEIR RUSTEN
  • RAGNAR WINTHER
چکیده

Domain decomposition preconditioners for the linear systems arising from mixed finite element discretizations of second-order elliptic boundary value problems are proposed. The preconditioners are based on subproblems with either Neumann or Dirichlet boundary conditions on the interior boundary. The preconditioned systems have the same structure as the nonpreconditioned systems. In particular, we shall derive a preconditioned system with conditioning independent of the mesh parameter h . The application of the minimum residual method to the preconditioned systems is also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refined saddle-point preconditioners for discretized Stokes problems

This paper is concerned with the implementation of efficient solution algorithms for elliptic problems with constraints. We establish theory which shows that including a simple scaling within well-established block diagonal preconditioners for Stokes problems can result in significantly faster convergence when applying the preconditioned MINRES method. The codes used in the numerical studies ar...

متن کامل

Efficient Preconditioners Based on Fictitious Domains for Elliptic Fe{problems with Lagrange Multipliers Eecient Preconditioners Based on Ctitious Domains for Elliptic Fe{problems with Lagrange Multipliers

The macro{hybrid formulation based on domain decomposition is considered for elliptic boundary value problems with both symmetric positive deenite and indeenite operators. The problem is discretized by the mortar element method, which leads to a large{scale sparse linear system with a saddle{ point matrix. In the case of symmetric and positive deenite operators, a block diagonal preconditioner ...

متن کامل

Uniform preconditioners for the time dependent Stokes problem

Implicit time stepping procedures for the time dependent Stokes problem lead to stationary singular perturbation problems at each time step. These singular perturbation problems are systems of saddle point type, which formally approach a mixed formulation of the Poisson equation as the time step tends to zero. Preconditioners for discrete analogous of these systems are discussed. The preconditi...

متن کامل

Preconditioning Mixed Finite Element Saddle-point Elliptic Problems

We consider saddle-point problems that typically arise from the mixed finite element discretization of second order elliptic problems. By proper equivalent algebraic operations the considered saddle-point problem is transformed to another saddle-point problem. The resulting problem can then be efficiently preconditioned by a block-diagonal matrix or by a factored block-matrix (the blocks corres...

متن کامل

Preconditioners for Generalized Saddle-point Problems Preconditioners for Generalized Saddle-point Problems *

We examine block-diagonal preconditioners and efficient variants of indefinite preconditioners for block two-by-two generalized saddle-point problems. We consider the general, nonsymmetric, nonsingular case. In particular, the (1,2) block need not equal the transposed (2,1) block. Our preconditioners arise from computationally efficient splittings of the (1,1) block. We provide analyses for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010